{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "Lobster Vignette.ipynb", "provenance": [], "collapsed_sections": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "source": [ "To explore how the selection of data analysis tools can fundamentally shape what is highlighted in an investigation, Pimental, Horton, and Wilkerson conducted a comparative analysis using several popular tools from multiple tool genres. This file demonstrates how Python can be used to carry out these analyses. The associated commissioned paper, supplementary materials, RMarkdown file, and dataset can be found at https://nicholasjhorton.github.io/K12-Data-Tools. Thanks to Jay Kienzle for translating the example to Python." ], "metadata": { "id": "bFeA4vGPbRJ-" } }, { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 204 }, "id": "8LCxT_3iPVHu", "outputId": "548a86e0-6523-426b-956e-60ef006d2bb6" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Common Name Species Year Region \\\n", "0 American lobster Homarus americanus 1971 Gulf of St. Lawrence South \n", "6 American lobster Homarus americanus 1972 Gulf of St. Lawrence South \n", "7 American lobster Homarus americanus 1973 Gulf of St. Lawrence South \n", "8 American lobster Homarus americanus 1974 Gulf of St. Lawrence South \n", "9 American lobster Homarus americanus 1975 Gulf of St. Lawrence South \n", "\n", " Latitude Longitude Depth \n", "0 45.896731 -62.476134 NaN \n", "6 46.895090 -64.468539 NaN \n", "7 45.896731 -62.476134 NaN \n", "8 45.896731 -62.476134 NaN \n", "9 46.555377 -61.602654 NaN " ], "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Common NameSpeciesYearRegionLatitudeLongitudeDepth
0American lobsterHomarus americanus1971Gulf of St. Lawrence South45.896731-62.476134NaN
6American lobsterHomarus americanus1972Gulf of St. Lawrence South46.895090-64.468539NaN
7American lobsterHomarus americanus1973Gulf of St. Lawrence South45.896731-62.476134NaN
8American lobsterHomarus americanus1974Gulf of St. Lawrence South45.896731-62.476134NaN
9American lobsterHomarus americanus1975Gulf of St. Lawrence South46.555377-61.602654NaN
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ] }, "metadata": {}, "execution_count": 1 } ], "source": [ "import pandas as pd\n", "\n", "df = pd.read_csv(r\"https://nicholasjhorton.github.io/K12-Data-Tools/static/fishdata.csv\")\n", "df = df[df[\"Common Name\"] == \"American lobster\"]\n", "df[\"Region\"].replace([\"Northeast US Fall\",\"Northeast US Spring\"], \"Northeast US\",\n", " inplace=True,\n", " )\n", "df.head()" ] }, { "cell_type": "markdown", "source": [ "This vignette " ], "metadata": { "id": "HoTbTN8pSSA_" } }, { "cell_type": "code", "source": [ "print(df[\"Region\"].value_counts())\n", "print(f\"Total rows: {df.shape[0]}\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "FZqD7prIboMY", "outputId": "65d3ebdf-cf2b-4538-8e02-83b29daba2ff" }, "execution_count": 2, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Northeast US 89\n", "Maritimes Summer 50\n", "Gulf of St. Lawrence South 48\n", "Name: Region, dtype: int64\n", "Total rows: 187\n" ] } ] }, { "cell_type": "code", "source": [ "df[\"Region\"].value_counts(normalize=True)*100" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "WpligVvheGlp", "outputId": "3b0490e8-8313-4a61-82ad-67d58311bcb7" }, "execution_count": 3, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Northeast US 47.593583\n", "Maritimes Summer 26.737968\n", "Gulf of St. Lawrence South 25.668449\n", "Name: Region, dtype: float64" ] }, "metadata": {}, "execution_count": 3 } ] }, { "cell_type": "code", "source": [ "df[\"Year\"].value_counts()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "vMQDePsBfl76", "outputId": "f089608d-7ebd-4caa-bc33-55528c097fbc" }, "execution_count": 4, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "1996 4\n", "1993 4\n", "2019 4\n", "1997 4\n", "1998 4\n", "1999 4\n", "2000 4\n", "2001 4\n", "2002 4\n", "2004 4\n", "2005 4\n", "2006 4\n", "2007 4\n", "2008 4\n", "2009 4\n", "2010 4\n", "2011 4\n", "2012 4\n", "2013 4\n", "2015 4\n", "2016 4\n", "1995 4\n", "1994 4\n", "1982 4\n", "1983 4\n", "1976 4\n", "1977 4\n", "1978 4\n", "1979 4\n", "1980 4\n", "1981 4\n", "1992 4\n", "1984 4\n", "1974 4\n", "1985 4\n", "1986 4\n", "1987 4\n", "1988 4\n", "1989 4\n", "1990 4\n", "1991 4\n", "2003 3\n", "2018 3\n", "2014 3\n", "1975 3\n", "2017 3\n", "1971 2\n", "1972 2\n", "1973 2\n", "1970 1\n", "2020 1\n", "Name: Year, dtype: int64" ] }, "metadata": {}, "execution_count": 4 } ] }, { "cell_type": "code", "source": [ "df[\"Latitude\"].describe()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "2R7t6-5bg8WL", "outputId": "bcefa739-f1d6-4bfc-a2dc-1884622219df" }, "execution_count": 5, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "count 185.000000\n", "mean 43.547218\n", "std 1.971605\n", "min 40.787100\n", "25% 41.945837\n", "50% 42.957488\n", "75% 45.896731\n", "max 47.227152\n", "Name: Latitude, dtype: float64" ] }, "metadata": {}, "execution_count": 5 } ] }, { "cell_type": "code", "source": [ "df[\"Longitude\"].describe()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "W0C-0fqpiuNT", "outputId": "da49d0c6-2e8e-443b-abc4-15da68c97b4a" }, "execution_count": 6, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "count 185.000000\n", "mean -66.246863\n", "std 2.631807\n", "min -70.236450\n", "25% -68.720644\n", "50% -66.130305\n", "75% -63.452232\n", "max -60.735165\n", "Name: Longitude, dtype: float64" ] }, "metadata": {}, "execution_count": 6 } ] }, { "cell_type": "code", "source": [ "import pandas as pd\n", "import plotly.express as px\n", "\n", "fig = px.scatter_mapbox(df, lat=\"Latitude\", lon=\"Longitude\", \n", " zoom=4.5,\n", " color=\"Region\"\n", " )\n", "fig.update_layout(mapbox_style=\"open-street-map\")\n", "\n", "fig.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 542 }, "id": "BWHjVmnL1ICC", "outputId": "a3711fb3-4b2c-4464-d886-6ff03fa24624" }, "execution_count": 7, "outputs": [ { "output_type": "display_data", "data": { "text/html": [ "\n", "\n", "\n", "
\n", "
\n", "\n", "" ] }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "import pandas as pd\n", "import plotly.express as px\n", "\n", "fig = px.scatter_mapbox(df, lat=\"Latitude\", lon=\"Longitude\", \n", " zoom=4.5,\n", " color=\"Year\"\n", " )\n", "fig.update_layout(mapbox_style=\"open-street-map\")\n", "\n", "fig.show()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 542 }, "id": "7yEihEns4dPE", "outputId": "ab029a51-7d30-48a8-8bbc-fc2d6e0e13c2" }, "execution_count": 8, "outputs": [ { "output_type": "display_data", "data": { "text/html": [ "\n", "\n", "\n", "
\n", "
\n", "\n", "" ] }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "import seaborn as sns\n", "\n", "sns.lmplot(x=\"Year\", y=\"Latitude\", data=df, hue=\"Region\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 386 }, "id": "caiVUINvlAGY", "outputId": "c5d2dda7-4f9d-4f71-f0ed-061b5f62b7c5" }, "execution_count": 9, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 9 }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfoAAAFgCAYAAABT6LtsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOyde5zjZXnov0/uc92d3Zld9n5BkDso6w0FwUqLyqFeD95F7aH2WKVa1GqttZ6KeLQqWhWwVewRixWxpSoogivIfRF3lzvsBZZlb7M7szM7SSa35/zx/pJJJslMMklmkszz/ex8kry/25tfsnne5y6qimEYhmEY7YlvridgGIZhGEbjMEFvGIZhGG2MCXrDMAzDaGNM0BuGYRhGG2OC3jAMwzDamMBcT6ASzjvvPL355pvnehqGYcxfZK4nYBgzpSU0+sHBwbmegmEYhmG0JC0h6A3DMAzDmBkm6A3DMAyjjTFBbxiGYRhtjAl6wzAMw2hjTNAbhmEYRhtjgt4wDMMw2hgT9IZhGIbRxpigNwzDMIw2xgS9YRiGYbQxLVEC1zCM5mTjY/u56vbt7BqKsqqvkz8/az1nH7dkrqdlGEYeJugNw5gRGx/bz2dufJigX1jYEWT/aJzP3Pgwn4NZE/a20DCM6TFBb8wZ9iPd2lx1+3aCfqEz5H5GOkMBookUV92+veLPsZbvQDMsNAyjFTBBb8wJ9iPd+uwairKwI1gw1hH08+xQtKLjq/0OTF4UDEcTJRcaV/52Gy9Zv5i0Kt1h+4kzDAvGM+aEfG1QxD0G/cJVt2+f66kZFbKqr5NYMl0wFkumWdnXWdHx1XwHsouC/aPx3KLgif1HSKbSZDJKKpMhmc7gF2HnwTH2HI4xEkvW5X0aRqtjgt6YE3YNRekI+gvGqtEGjbnnz89aTzKtRBMpVN1jMq38+VnrKzq+mu/AVbdvJ+CDSMBPWpWg34ffB3tHxkmmM6TTSiajxJJpjurtqMv7M4x2wexaxpywqq+T/aPxnNkVqtMGjbnn7OOW8DmcEH52KMrKKn3sU30HfvPoPr79W3feZQs62D54hP7uEMl0Jrdvf1eIvSPjxJJpIkEf8WSGVEZ564tWkc4ouw5FOTA6zqmrFtb7rRtGSyGqOtdzmJYNGzbopk2b5noaRh3J9892BP3EkmmSaeVzF5xoPvp5QvY7EPBBJOgnmnDfgdecuJSfP7SXgE9yAnzvSJyFHQH6OsO542PJNAGBznCQ5w7H6Aj6OWpBhCPjKZ4+GGU8leH5S3v45UfOqsd0pR4nMYy5wDR6Y06oVRs0WpN0RhlPpUmkMpywvJcPnfM8rr33GfaOxDiqt4O3vmgV192/i4BPcmb9jqCfBZEAQ9EkIoICsYQ7R8DnI3ooBsAQSZ47HC+43p7DMdIZxe8zOW3MX0yjNwyjIaTSGRLpDOPJicdUJjPtcW+9+m4iAR+JtDKeypBIZRhPObN8OXziXAHr+rtyf8ct62HDmkX46iPkbaVgtCwN1+hFxA9sAnar6vkicgfQ421eAtynqq9v9DwMw2gcyfSEQHaPadKTBPN92w9x3f272DMSY1lvB/9zw0pWLupgx2CUHYNH2DEYZefgGPtHE1Nea0lPmPUDXaxd7AT6+v4uVi3qJBQojC2OBP31EvKG0dLMhun+EuBRoBdAVc/MbhCRnwD/NQtzMAyjTiTTTqCPJ9M5TT0zhWVQVbn10f1c+dttZFRJKzy85zCf+s/hKa/jEwgHfPh9gk+Et794Na89ZZnlxhtGlTT0f4yIrAReB3we+Oikbb3Aq4D3NnIOhmHMnKxPfTzpCfcSmno+Y+MpdgyOFf2NxFNljwkFfKxdXGh2PxxN8vMte9g3Gs/57l+8flFVcxdT5g0DaLxG/zXg40yY6vN5PXCrqo6UOlBELgYuBli9enXDJmgYhiOV1dSnML9nSaQy7BqKsmNwjO0Hxth50D3uHx2f8hohvxAK+AgH/IT8QjKd4d8vflnJYLlXn7B02jkH/T4CfiHg8xH0C36fuDGfEPBbmRDDgAYKehE5H9ivqg+IyNkldnkb8C/ljlfVq4GrwQXjNWSShtGEzEYPgKz5PTGNUM+osudwnB0HxthxcMw9Do6xayjKFIo9A91h1g04//m6/i5+8sCzRBOpopz5pb0d00bEZ4V50O/z/iYEu5RR262PgmFM0EiN/uXABSLyWiAC9IrID1T1nSLSD7wYeEMDr5/D/tMbrUIjegBkMkp8GvO7qjIUTbJjcIyNjx/g7m0HGYknyahOKdB7IgFnbl/cxdr+CcHeHSn8aVkQCXLFbU+WLG4jIgR8TtPPauJB/4RmXk6Yl8P6KBhGIQ0T9Kr6SeCTAJ5Gf6mqvtPb/GbgZ6oaL3N43bD/9EYrUWtHuHyfesKLhM+vJgcQTWT96FHv0UW8H56iNnzAJwWCPPvX3x2aVhCLCC8/pp9QwMe19z7DnsMxVvR18L9esZ5XHb+k7ib2enTVM4x2Yq7CV98KXD4bF7L/9EYrUU1HuFQ6w62P7OM7v9vB7uEYR/VGuHDDRNBaMp1h16FoLiBuu/e4b2RqP3q2Ip3zo/tQlKU9Eb761tNK7p/VyF39eSnrK1+1qJM3nr5yJrelKmrtqmcY7casCHpV3QhszHt99mxcF+w/vdFalKr/Hk2kWL6wg5F4MudTT6Qy3LPtIFfc9iR+gXBA2HUoyj/+4lHW93dxOJ7k2aHYlBHyvZEA46kMIb+PzpAPEPaPjrOkJ0R3eOL/jKLsG407v3hACPl9BPw+Qll/eZMFvVkfBcMopO0TUu0/vdFKXHzmOj5z48NkMknCAR+xZJpEWnnDaSsYHB3n0FiCnZ52ft19uzgyniSZUfLT2LfsPlxwzq6w3zO5d7Ou36WxrV3cxWdvfISDY+MFHeSGYgkOHkmwoGPCJB9Ppli7uIvtB460RKzLn5+1ns/c+DDRRKqgj0KlXfUMo91o+xK41jzFaCS1BHpmS8TmtPR0hmRauXfbQa699xl2D0fpCgdYvaiTaDLNjgNjDE/hRxdcTroIvPula7yo9+4iP3o2ev0N37qThR1BfCLg/jEaT/LscIy1i7sK/r+8+YUruP73u1vm/1H2c6ljHwXLyjdalrYX9NCQ//RGA2nGLIlScwIqWkSqejXb84R6Mp0hnVFS6Qy7hmITfnQvfW3vSPk4VZ/A8oUdjMZdH/iuUIBwwJnR46kMQZ+woDPEnpE4Kxd28N4z1nLO8UuKUtLedvU9Jd0EQZ/Q1xUu+P9y1e3bS+67pCfCv1/80nrf7mbEBL3RsswLQW+0Ds1ogSk3p66Qn0Q6UyD8xsaT9HdHuOpdpxdEvWdU2TcSz6sW54Lkdh2KTtmsZXF3iHXZmu4D7nHNok7CQT/37TjE1299Mjev8VSGkXgSARZ0horuH1CwWHnZ+kUVa+mv+OJtLOwIFlgGVJXDsSR3fOJV9b3hzYkJeqNlaXsfvdFaVJslUan2X4uVYPKcOoJ+VFNsO3CE9QPdJNMZVF3Qmt8n7Bw8wm2P7SuIdN85GCWWTJe9RlfYnxPo6/q7WOc1bVngCdeg3wXBhQK+XJ75hf2rOKo3UmCtigQLFx/Z+3f5TY8STWYK0kyv//1u3vzCFdy9/dC01q5qY12a0SpjGPMV0+iNpqIazbFS7X+mVoJk2mnjr/6n39IbCYCIE+iqKMqOwTEWdYURyFWZi6fSUxaYAbdQOO6oHl60to91A67YzEBP2BPg7i+UVw1ucle2mdy/J/cfYWVfx4xN79Xcw2a0ytQB0+iNlsU0eqOpqEZzrFT7n2q/Vz5/IBcEl/TM7NnX2UXwQHeYfaPxnEAfT2WIpzKkM0xZ292VanWLA79P6IkE6A77GU85M/4JyxZwznFLClLWGnX/gILo+uzrStNMzz5uCZ+DimJdrHaFYTQXJujnCY0wpVZzzkr3rSY1qtIaCc8cGmNBR5B0xmniqq4ozM7BI+wYHMvtp6rsGx3P1XPP/j19MEp6CstXwCf4BBZ0hADFJ06o+8QFvu08eIRUWp32LxAJOuH7o027eP0LV0x1i6um3P1b399FLJmuKc307OOWVPSdsdoVhtFcmKCfBzSiDHA156xm32o0x8naq6oylkhx1IIIh8YSTjtPZRjojhTlix8Zdw1WvnrLE9zl1XVPZ6au6+4Tp5n3RoK8/OjFnH3cEtYt7mJBZxC/V6v9jd+6y6Ws+QTBVY3LeOb+/OYtjRJ85e4fMGu55Va7wjCaCxP084B6mFIna+TD0UTF56z2+lNpjqm0a4aSSGd4+4tXcfnNj5NMJwgH/MSTaVIZ5U0vWMlwNAE4AfPy5y3mB/c+zVA04dWCz+QE+rY8jT6L3ydF/dHX9XexpCfslXt1fnPXbtU9Bj2z+9rFXU7I+QMF50MLXbyNFHzl7l+lC6hasYI1htFcmKCfB9RqSi2lke88GGXlwkhF56zm+pmMksxkSKXV/WWcYE+m3Vgmz4R+4ooFfOic53Hd/bvYczhKX2eYF65eyK8e2csXbnqMI+NJ0tMExgV8QtgT2OGAD4WCuu5B/4QwDwf8hAK+KduqlhJy3eEAAjULvlrdL5Wa3mulGquMYRiNxwR9BbR6qlCtptRSGnnQL+wbGae3I1R0zsn3qyccKPAPTzaxp9IZkl7xmKlqs2eP3T86XuBDHxlPciiaZN9ogsf2jZY8rjsc4PlLuyc6sA108dkbH3bpa2Qrwwmg7Boa429+spXdw1FWL+qq6vMuJeT+7nUn5O7jTAVfq3VhnK1FhWEY02OCfhpa7Qe2FNWaUicL6if3j3JUb6H2vrQnzLPDsaJzvmz9Iv7uvx4i6Bd6wwH2HI4x4pVtTaYzhAMTvcjzTeylOBxLFgh0l48+xliifD66T5yW3hH050zrGYUlPRG+9JZTvX2cP331oi4OHhmnM+zP+dMPjMYZS2Q4ODZOX2doRp93OSFXy/fFItkNw5gpJuinoR1+YKsxpZZa2IzGUwT94/R3O2GfDSw7enEXCzpD7B6OsWxBB2978SquvfcZAAI+H6mMEvL76AoHCPqE3o4Qe0diHNXbwVtfNNFONZ5M8/TBKNs9QZ59PDhWfhEQ8AmrF3UW9Uj/qx89OKGlQ66G+/7ROEt6I7miMwB/ec7z+MyNDxNPpukI+okmUgxFkyzqCjbd522R7IZhzBQT9NPQLj+wpbTMUi6Jq27fTsAHkaCfjEI44GdBJMDBIwnPXz0R9HbJq47JCessX/rV4664TB6RoI/ReIqr3n0Ku4dibB8c45E9I/xs6x52Hhxj91CMqQz2yxZEigLjVvZ15ALgsgR8Plb2dXJoLEFnyI9PnJYeTaRYs7iL7nDhvEotgA7HkizuChfs1wyft0WyG4YxU0zQT0M7/sCm0hlue3Q/n/v5IwR8QnfIz3PDUT71063Ekmn6u0MkU5nc/gs6gyTTGRZ1hktq5Pks6+1g8EicoN9HwisuE02mUYXXfv0OklNEx/V1Bl0L1X5XLW69Vwa2I+Tnvu2HuO7+Xfz60X0s6+3gHS9ZzSufP5AX/e7H7xM+/Kpj+MyNDzOemtDSp3JTTF4AlWr00gyft0WyG4YxU0zQT0Or/cCqKqlMXsR62kWxp3NjruLbtzZuc21N/b6c5p7RtCvjmswU5JzHkxnWLO7mKxeeWnS90XjS1XP3iswMRRPsHo5PqaFHgr4iDX1dfxd9naGS+//+6SG+8ZunCPqFxV0hRuIJvvGbpxjoCdeUh1+KZv28LZLdMIyZYrXuK6DZ2txmc8mzKWeT09Eq4W3fuYfeSGDCl41ryjI4Ok4kFCDgEyLBicC5//3KoxnoDedaqe486HzpB4+U96MDRAI+nn9UDxvW9rHW09KX9kZcD/QSBP0+wkEfYb/fPQZ8vP07985qi9Rm+7yNpsBq3Rsti2n0FTDbqULprBDPKOk8QZ4dq8fibFlvR1G1uHgyw+pFXfzR8Uu44fe7eW44nuuU9vf//fCUVeOO6o2wtr/TC4zrZl1/J6sWdRb50bOIF/ke8gR7yMtXlxILgNmOk7DUMMMw2gkT9HPA5KIw+YL8zqcGue6+XewZibFsCl84kPNbV7LvZC7csJKv3vqka3iiSjTpysXuORxn8+7DeXsWprIt6AgWmNvX93extr+zQNsuRb4vPVucppRQL0U7xkkYhmHMFiboG4Cqkkyr08xzAn36ojD3bT/EFbc9ScAn9EYCHBwb54rbnuQSiqPbq9l3NJ7NR49O5KMfHGM0nir7HiIBnwuKKxDoXSzqKu1Hz6eU+b1SoV6KZvWbG4ZhtAIm6GdIPfzkk7nu/l25Yi9ATqhdd/+uIuFdat9oIsV379zBcCxRkJM+OIUf3SewalFnTpBnc9KPWlDej55FRAj6pUBTD/l9+KYoETsTLBDNMAxj5pigL8NU5vV6+ckns2ckVjIHfe9IrGAsnXFlWoN+H9FEmvFUmvFUJpe6dvnNj5c8/9LecJGGvqqvM1dAZiqy1eQKmrn4a9PUq8H85oZhGDNj3gr6/DS0ZCZDMpXxTO2V1VxvBJMD5FSVIwlXI/5H9+9yke4Hxnj6UJREqrzVYLIfPduJrStc2cedbbnqAuX8BdXkDMMwjNairQV9fvR6Ku003lSeZt5MHImneOm6Rfzw/mdKtlO96vbtRccIEPQLkaAfnwg+H/zFWUfzquOXVKxpZ4V6fpBcoEykvGEYhtF6tK2g3zk4VtDStFlIpDI8c6i4rvv+0fGyx/jERZ4XFJgZ6GLXwSj/senZaavVZfH7JNdqdXIfdcMwDKM9aUtBr6pzLuTTGWXv4XiBQN8xOMazQ9Ep89GX9OT50QfcYzk/+oqFHbz06MUlzyOS12c96LR1E+qGYRjzj7YU9LOJqnJoLDFJQ4+y8+AY41P40XsjgVz6WjbSfW1/ceOVSsmZ3710tnDAP/1BhmEYRttjgr4Kjoyn2DmpP/qOwTFGpshHDwd8rFncWVTXfXFXqKqI9fziOMsXdPDul63hnOOWEPGC5eqd0mYYhmG0ByboS5BIZdh1KMqOg3l13Q9M70dfmfOjd+bKwC5b0IG/BiHsE+GBpw/xjd88Rcgv9HeFGIkn+eqvn6SvM2QpZ4ZhGMaUzGtBn1Flz3C8SEPfNY0ffaA7zLqBroIiM6sXVZaPPhXZ+u8537oXOPfJG7YSCfpyJWA7Qz6iiRRX3b7dBL1hGIYxJfNC0KsqQ1FXBjbfl/704BjxKfzoPZFAcV33xV10R+pz2yb71csVoJntpi6GYRhG+9B2gj6eTPPw7sPcuW3Qq+1+hB2DUQ7HkmWPCQV8uaIytfjRpyLg8xUEyoUDlfvVramLYRiGMVPaTtA//NwIb7ry7pLbfOJS0vJz0dct7mL5wtr86JPJ5qu71DanqddShMaauhiGYRgzpeGCXkT8wCZgt6qeL05F/kfgLbgeqN9W1a/X63rHLu0GoL87VNSoZfWiTsLB+qadzUa+ujV1MQzDMGbKbGj0lwCPAr3e64uAVcBxqpoRkbpKq55IkM1/fy4Hp+jYVguV+tXrjTV1MQzDMGZCQwW9iKwEXgd8HvioN/wXwNtVNQOgqvvrfd3eSLAugj7g8xEJTgh2y1c3DMMwWo1Ga/RfAz4O9OSNHQ1cKCJvAA4AH1bVJxs8j2mZ7FcPB/x19dsbhmEYxlzQMEEvIucD+1X1ARE5O29TGIir6gYReSPwXeDMEsdfDFwMsHr16nrPzerAG4ZhGPMC0QY1fxGRLwDvAlJABOejvwHYALxGVXd4gXnDqrpgqnNt2LBBN23aVNF1Nz62nyt/u40dB8dY5nV0e/kx/YSDPiKeUM/61Tc+tp+rbt/OrqEoq7wAN6BorJxvvJrja71WpZS6jvn2DaNmzLxntCwNE/QFF3Ea/aVe1P3lwBOq+l1v/Euq+qKpjq9U0G98bD+fufFhgn4h6PcxnkqTSiv/509PKhJ2+ftmU9YOx5II0NsRLEhj+9wFJ9Z0/JtfuILrf797xteqlFJzqvWchmEAJuiNFmYu7NWXA28Ska3AF4A/q9eJr7p9O0G/0BkKEPT76A4HCQV8XHX79in3FXGPR8ZTjMZTBWNBv9R8/L/8bkdN15rJ+6/XOQ3DMIzWZlYK5qjqRmCj93wYF4lfd6opFVtq33RGmWzhqMfxY4k0qyfl71dzrUqxUrmGYRjGZNoqAm1VXyexZLpgrFyp2FL7+n1CwFd4S+pxfFfIX9O1KqWa928YhmHMD9pK0P/5WetJppVoIoWqeyxXKrbUvt3hAD2RQN2P/7NXrKvpWo14/4ZhGMb8YFaC8Wql2qj7SkvFltoXKi81W83xtV6rUqp5/4ZhVIwF4xktS9sJesMwjAZggt5oWdrKdG8YhmEYRiEm6A3DMAyjjTFBbxiGYRhtjAl6wzAMw2hjTNAbhmEYRhtjgt4wDMMw2hgT9IZhGIbRxpigNwzDMIw2xgS9YRiGYbQxJugNwzAMo40xQW8YhmEYbYwJesMwDMNoY0zQG4ZhGEYbY4LeMAzDMNoYE/SGYRiG0caYoDcMwzCMNsYEvWEYhmG0MSboDcMwDKONMUFvGIZhGG2MCXrDMAzDaGNM0BuGYRhGG2OC3jAMwzDaGBP0hmEYhtHGmKA3DMMwjDbGBL1hGIZhtDEm6A3DMAyjjTFBbxiGYRhtjAl6wzAMw2hjTNAbhmEYRhsTmOsJNB1P3AJ3XQHDT8PCNXDGJXDsuXM9K8MwDMOYEabR5/PELXDTpTC6DyJ97vGmS924YRiGYbQgDRf0IuIXkQdF5Gfe62tEZIeI/MH7O63Rc6iYu64AXwhCnSDiHn0hN24YhmEYLchsmO4vAR4FevPGPqaq18/Ctatj+GmnyecT7IDhZ+ZmPoZhGIZRIw3V6EVkJfA64F8aeZ26sXANJGOFY8kYLFw9N/MxDMMwjBpptOn+a8DHgcyk8c+LyBYR+aqIhEsdKCIXi8gmEdl04MCBBk/T44xLIJOARBRU3WMm4cYNwzAMowVpmKAXkfOB/ar6wKRNnwSOA14ELAI+Uep4Vb1aVTeo6oaBgYFGTbOQY8+F13wZepZCfNg9vubLFnVvGIZhtCyN9NG/HLhARF4LRIBeEfmBqr7T2z4uIt8DLm3gHKrn2HNNsBuGYRhtQ8M0elX9pKquVNW1wFuB21T1nSKyDEBEBHg98FCj5mAYhmEY8525KJhzrYgMAAL8AfjAHMzBMAzDMOYFsyLoVXUjsNF7/qrZuKZhGIZhGFYZzzAMwzDaGhP0hmEYhtHGmKA3DMMwjDbGBL1hGIZhtDEm6A3DMAyjjbF+9O3GE7e4bnvDT7va/WdcYgWADMMw5jGm0bcTT9wCN10Ko/tcF77Rfe71E7fM9cwMwzCMOcIEfTtx1xXgC0GoE0Tcoy/kxg3DMIx5iQn6dmL4aQh2FI4FO2D4mbmZj2EYhjHnmKBvJxaugWSscCwZg4Wr52Y+hmEYxpxjgr6dOOMSyCQgEQVV95hJuHHDMAxjXmKCvp049lx4zZehZynEh93ja75sUfeGYRjzGEuvazeOPdcEu2EYhpHDNHrDMAzDaGNM0BuGYRhGG2OC3jAMwzDaGBP0hmEYhtHGmKA3DMMwjDbGBL1hGIZhtDEVCXpxvFNEPuO9Xi0iL27s1AzDMAzDqJVKNfpvAS8D3ua9HgW+2ZAZGYZhGIZRNyotmPMSVX2hiDwIoKpDIhJq4LwMwzAMw6gDlWr0SRHxAwogIgNApmGzMgzDMAyjLlQq6L8O/BRYIiKfB34HXNawWRmGYRiGURcqMt2r6rUi8gDwR4AAr1fVRxs6M8MwDMMwamZKQS8ii/Je7gf+PX+bqh5q1MQMwzAMw6id6TT6B3B+eQFWA0Pe84XAM8C6hs7OMAzDaGpEJA1sxcmTHcC7VHV4BudZDnxdVd9c5ynOe6b00avqOlVdD/wa+B+q2q+qi4HzgV/NxgQNwzCMpiamqqep6knAIeCDMzmJqj5nQr4xVBqM91JV/UX2hareBJzRmCkZhmEYLcrdwAoAETlaRG4WkQdE5A4ROS5v/B4R2Soi/ygiR7zxtSLykPc8IiLf8/Z5UETO8cYvEpEbvPM+KSL/d47eZ0tRqaB/TkQ+7X0Qa0Xkb4HnGjkxwzAMo3XwUrD/CLjRG7oa+JCqng5ciiu8BnAFcIWqngw8W+Z0HwTU2+dtwPdFJOJtOw24EDgZuFBEVtX9zbQZlQr6twEDuBS7nwJLmKiSZxiGYcxfOkTkD8BeYClwi4h046y+P/a2XQUs8/Z/GfBj7/kPy5zzFcAPAFT1MeBp4Fhv262qelhV48AjwJo6v5+2o9L0ukPAJQ2ei2EYhtF6xFT1NBHpBH6J08avAYZV9bQGXG8873mayiu8zlsqbWrzGxG5bfJfoydn5PHELXDN+fC1k93jE7fM9YwMwzByqGoU+DDw10AU2CEib4FcY7RTvV3vAd7kPX9rmdPdAbzDO/ZYXNbX4w2aettT6Uro0rznEdyHlKr/dIySPHEL3HQp+EIQ6YPRfe41X4Zjz53r2RmGYQCgqg+KyBaca/cdwLdF5NNAELgO2Az8FfADL9brZuBwiVN9yzt2K07WXKSq4yIyG2+j7RBVndmBIvep6rStar0AjU3AblU9P2/868D7VLV7unNs2LBBN23aNKN5tgXXnO+Ee6hzYiwRhZ6lcNHP5m5ehjF/MAlTJzwTf0xVVUTeCrxNVf90rufVzlSk0U+qkOcDTgcWVHiNS4BHgd68820A+io83hh+2mny+QQ7YPiZuZmPYRjGzDkd+Gdx6vkw8L45nk/bU6npPr9CXgpX/ej90x0kIiuB1wGfBz7qjfmBLwFvB95Q/ZTnIQvXFGv0yRgsXD13czIMw5gBqnoHcOq0Oxp1o1JBf7yXypBDRMIVHPc14ONAT97YXwI3quqeqfwtInIxcDHA6tXzXKCdcYnzySdwmnwyBpkErD3TmfWHn3aLgTMuMZ+9YRiGUUClefR3lRi7e6oDROR8YL+qPpA3thx4C/CN6S6oqler6gZV3TAwMFDhNNuUY8+F13zZ+eTjw+7x1LfD5h86TT8/QM+i8Q3DMIw8putedxSunGGHiLyAiYCUXqCz7IGOlwMXiCrzhqAAACAASURBVMhrcZH6vcDDuBzIpzxtvlNEnlLV5838LcwTjj23UFu/5nwXhZ8154c6ncZ/1xWm1RtzzxO3uO+iWZsMY86ZznT/J8BFwErgK3njo8CnpjpQVT8JfBJARM4GLs2PuvfGj5iQnyEWoFcdJngaQ6n7CpYOahhNxHTd676vqufgchjPyfu7QFVvmKU5GqVYuMb56vOxAL3SZOsQmJujvpS7r7d+dsLaJOIefSG3IDDqgogsFZEfish2r2nM3SIybXCziOwUkX7v+YdF5FERubaK6/67iGwRkY9MGn++iGwUkT9457zaGz/Ns+pWcu4jlc6jmRERn4h8XUQe8pry3C8iM2rpLiKvF5ET8l5v9LLWqmI60/07VfUHwFoR+ejk7ar6lRKHFaGqG4GNJcanzaGfMYko+PzgC7jHdqNcgN4ZVqm4iLuuMDdHIyh3XwefhIHjCvedx9amtX/z8/OAjwHrcBlLX9p5+etunun5vLS0/wS+r6pv98bWABdUear/DbxaVcs1lpl83aOAF5Wxwn4d+Kqq/pe378ne+GnABuAXJY6ZFUQkoKqzWeDtQmA5cIqqZrzss7EZnuv1wM9wNf1nzHTBeF3eYzcucj7/r3FCulZUYeQ5GN4Fh3bA4FNwaLv7oTm822keY4MQPQTxEUiMQWoc0il37FxSaanbUgF6rzHTaEmGn3aCJp95LHjqRrn7Kpi1ycMT8t/ENXQ55D1+0xufKa8CEqp6ZXZAVZ9W1W9ArpXrP2e3icjPPPcpeWNXAuuBm0po5yVbxAK/AlZ4WvuZk+a0jLxOdKq6VURCwOdwHeb+ICIXVvtGReR/iMi93jx+LSJLvfGtIrLQK617UETe7Y3/m4ic692DG71S7beKSJeIfFdE7vPO9ad596pk21sROU9Efi8im0XkVm+s5HlK3Is9qprx7sWzqjrkHf82b+4PicgX8651JO/5m0XkGhE5A7d4+5J3/472dnmLd/0nSnwOJZlSo1fVq7ynv1bVO/O3icjLK7lA05DJOI23Enw+kKw1IDBhFcg+9wcbYyWottTt5AC9VmO2/OZWh6AxlLuvi54HyTGzNjk+hgtAjnqvo3njM9XqTwR+X8ukVPUDInIecI6qDk7anGsRK66H/K/E1Zu/APhZmUY1XwVuE5G7cAuC76nqsIh8Btigqn85w6n+DnipV0Xvz3Dp2n8N3IkL+H4a2A6cCfwbrjPeX+Cyu16I06oPichlwG2q+j4RWQjcJyK/9q5xGvAC3Of0uIh8A4gD3wHOUtUdMlE07m9LnUdV8zX2/wB+5wnhW4EfeKWBlwNfxBUMGvLu6+tV9T9LvXFVvUtEbsTd8+sBnDGHgKq+2HOJ/D3w6uluYqXpdaXS4aZNkWtZMhlIJ90P1PgoxIacBWB0Lxx+1lkJDm6DoZ3u9eheGDsIseEJ60AmXf11802h7e7bnE2/+RmXOEGTiDqLTSI6nwVP/Sh3X1/9D7Vbm9qnidM6JoR7lqg3XhdE5Jue1nl/nU45VYvYkqjq94Djce1nzwbukcpqrUzHSuCX4mrefwy3yAHX9OYs7+/bwMkisgIYyhO6t3idVwH+GPgbcS1zN+IywbIr/VJtb18K3K6qO7z3V8l58PZ9Fng+Lhg9g7Mo/BHwImCjqh7wXAnXevOvlmx83APA2koOmM5H/zJcT+GBST76XqANHd9VoOpM/elJrp+dd8KD33eug94VcPp7Yf0rCy0CPr9nMfAexeeez6dI+tn0mx97LvBlz3rwjNPkLeq+dqa7rzO9v+3VxGkHzpSbL+w7vfGZ8jAT3d9Q1Q+KC7DLNgRJUajERWq4VsWo6nPAd4HvishDwEl1OO03gK+o6o2e++Gz3vjtOMvDapyW/QbgzbgFQJZ8LVuAN6lqQQc8EXkJ1bW9LXmeyajqOHATzjWyD+dr//VUh+Q9n+7zys634ha90+0UwvniAxRWtxvB3VQjn513wu1fBF8QwgucFWDjZU67X1uBp6NriTsm2OlVLBBnVehZ5qwKpRYHrRpoONuLmlZ3czQrtd7XUu6b9gqe/BLORw9O2HcCYW98ptwGXCYif6Gq3/bG8uua7AT+t4j4cHVQpm0+Nolsi9jbpLBF7LJyB3hugFtVNekF7S0GduM0zp5yx1XAAu88AO/JDqrqLm9xE1LV7SLyO1yX1XIugl8CHxKRD3lugBeo6oNTXPce4Fsisi5ruve0+mnPIyIvBPaq6nPeZ3AKsAW4D/i6N+8hXIe/rGV8n4gcj7vPb8ClsOM91nL/gOl99L8Ffisi16jq07VerO158PtOyAe9BVkwAklvvBJB/4J3u4VCMgqBCKTikEm6KnhjB8sfJ5JnJZhkMchaEvJfNwPmNzfKae6JqFvc5tOilq2dl7/u5rV/8/MPUseoe0/AvB74qoh8HDiA014/4e1yp3edR3ANxar158+kRewfA1eISLZU+sdUda+I/IYJU/cXgG3AB1T1z0qco1NE8jMAvoLT4H8sIkO4BU6+y+NeJizLd3jn/12Z+f0fXEn2LZ7w3QGcX2ZfVPWAuDLsN3j77wfOrfA8S4Dv5Lku7gP+WVXjIvI3wG9wqtzPs1kKwN/gousP4Cwz2WD367xzfZgalOuK2tSKyAAuCOJE8swKqvqqmV64GqpuU6vqfOizzffPd5p8/v8HBcZH4D3/Xdk5cqb/PdC7DF7wnsoWCZUi4lkDApMWBz4Kgw8Dbt9Gkf8jnx+wZZkD84dy7ZfH9kHX0mZry2xtao2WpdKmNtcCP8KtXD6AM6EcaNSkauKJW+DOr8GhbdC7vP6Ccip6lzvNO5jnYknFncCulLUvb+x8VUHTlQUL+nzOQuEPukefv3Bx4A/OfDFgfvPWo95ZEuXcN76QF+SHNXEyjDpQqUb/gKqeLiJbVPUUb+x+VX1Rw2dIFRp9VksUTyhlTd9nfWJ2hH2+jz7f9D5b158LfH7wh9yfzz9hMRAfkG898KwG84F2LLfbCAtMOY2+Z+mErz67CFx7pmviNHcWINPojZalUo0+6T3uEZHXAc8Bi6bYf27IBvEEOyA9Xr2PvFbWvhz4RGNN781GJg2ZWHGBlFKIFC4EcsGF2ef5i4Ig+Cv9ejYR7RUxPkEjAuSmqu5oTZwMo25U+kv6jyKyAFeo4Bu49Lq/atisZkopU2Ag4oTubNFo03sro+pVHsxUfowvz03gC5SIL/BPLBKagfaKGJ+gEVkS1bhv5lPqqWHUmYoEvapmI2AOA+cAiEjzCfpsJHd+Wc5qfeRGc5Hx4glS49Pvm28tKFgI+Ca5EBroSignkPY/Vrl/uRlN/43Kkqg0Pc+yNAxjxtRiG/0oLs2geciZArXQR/+C90x/rDFBQdGfWQ5orIVsoCFpV9lwOnIZCJNqExQtFgIT49OlJ5YSSEcOQGK0uAogX3bb84V6vi+6mUz/c91EqZrrq4JmvL+850/dCvd8Cw7vgr61zbGAMoxZoKJgvJIHiuxS1VV1nk9Jqkqvy0Xdb58fPvJ6Mx8DCqslF2uQtyjILgK23wG3/v1ErEgq7gRL5yLoGpg4RyIKgZArmZwfYDayCzoXF+87t6lljpyloYYsiUyGgiJgkwUyWiic818/9Ru4/zsw8uxE1cl1r5h0jjK/ZwXFrHq973VVwXxNFYwnIgpcq6rv9F4HgD3AvapaNj+8xHmWA19X1TeLyGnAclX9hbftAuAEVb28/u+gaB5LgX8FVgFBYKeqVtTe1pieWgT9M6o6K3azqgT90NNw9StLmGonN6kpNzZ5vNw+05zHH6CwMY6/eHupc4l/YpvMgd/5pxcXpwgm49C1GN5w9ezPpxWZXAvh0A5X9XByfYVD25zAyr/Xg0+6DIa+tYX7jo/A+26aGBMhl9WQ/zr3PLdj8fxE8gRiVjjqpP0nj5eg6BzZyTJxbP7vy1x2hsz/XvvD7h5Ut4CauaD/7IKiNrV89vCMC+ZArtvZU8DLVDUmIq/BFYx5tlJBL5Pat4rIRdTWgGbGiMhVwCOqeoX3+hRV3TLb85iKyferlZiu1v0opf+nC9BRYnzuSSdcudh2oKRf2V/hAqTaBYr3fPAJCHRAKoYTJOK+AQe3w7bbJi1UsgFy/kkLlykWVeJvbCGeZmByQGapxVMq7v4XBSaVtQ6EvXgELdy396jK3BFGaUaec8Ws8pmNYD4n5L+Jq0+ea1PLZxd8sFZhj+vx/jrgelw51X/HdXFDRF4MXIErcBYD3quqj3vC/I24ymt+EXkPriLbC3EtZTtE5BW4RUMHnuAXkWu887wAV/ntfcC7cd3i7lXVi7zr/jHwD7gyv9u86x4Rkctx3e9SwK9U9dJJ72UZrusdAFkh79W3vzS7eBHXfneTql4jIju99/wa77wXe/N+HvAlVb3SO/4fgGHgZFxnua3AJd77e72qbvOKwl3JRIOav1LVO0Xks8DRuJa+z3j3ueWYrgRuzTV2Z53upfCW77uucpmU95fOe+79pVOF27XctnLnKHHOgvG87TqDTnbgzJHphPubTcZHS4/f9LH6nL+qxUiFC5ycFaTMfrntJSwuJa0rVVp1plq8vOA9XmljCt0hC9a45/kLgGC3+84k44X7NirOpFXjMaqlVDGr2Qnma0Sb2izXAZ8RkZ/h6ql/F0/QA48BZ6pqSkReDVzGRCOc/PatawFUNTG5pay3KMinDyfYLwBuxLWJ/TPgfs/s/yzwaeDVqjomIp8APioi38TVbz/OK9+7sMR7+SbwIxH5S1zzl+95TXKm4xlVPU1Evgpc480pAjyEE9wAp+I66x3CtbT9F6/N6yXAh3AZZFcAX1XV34nIalxN++O9408AXqGqFeQQNydTCvqWJNILJ/zp3JTALYdmyiwMyi0WJm+btF92IaKTXmcXFUULlTLXHjvg/J2pcZe+1rHYHX9knzdxmfCTBjqcMMs/x0yp9fhmJNdLoMxCIJOC6CH36A85k7EIjO6Z8O9n/cwL10LsIIzth1AXLDkRnnsA9m4uXngUWVOqWJw89wfY9B1nmQl2weh++O0XIH0prDuTpumLUA/yF1u+0GwGE67DCZh86tKmVlW3eIL6bTjtPp8FwPdF5BiceSiYty2/fWs1/LcnqLcC+1R1K4CIPIxrXrMSJxTv9Orih4C7cdlaceBfvUVJka9EVX8pIuuB83Aa+oMiUkn3uxu9x61At6qOAqMiMp63oLhfVfd4c93GhOVgK14WGfBq4IS8ev69IpKtN39jKwt5aEdB34yID/w+J0ybhWxwUsfi4qA7mL7ozw3/y9OQwhO+12QcOhfCH19WZmGSdtdIZ5+XWKgceBye/NWE2yKTdIuSxc+D0edg/IiLaF98LHT1T7FQmsbKUm4hpFXk+OejaUinK7O+ZJIuWLQcB5+YeJ6Mwo6NtTU1rZab/tp7IqUXDEXWk2m2Z60n0UMuLiEZhVA3LD0J+tYUunWmil+pdBFTEB/jPa54IbziUvjD/3MdIvtmLW2xEW1q87kRl75xNq5jXJb/A/xGVd/gLQY25m3Lb99aDdkc1wyFrV0zOFmSxi0iiszbnivhj3CNWf4SKOqT4i0+fgj80FsQnAXsgylb7k43J0qMj5fYxwe81OtJnz9vmPn9ahrmh6CfL+bJapiq094brp7+/ozumWjgk10Eh7qc8O9dPvN5/fRi6OgrNLGOHYL9D0PPcpdylorD8E445cL6f46lrC/lLCiaht0PwhO/cMKjcxGsOwf6j6nCcjOFxWWm7qN03lyz+8zsZjTO+pKMwvbb6n/eShA//Ok3YP3Zs3G1RrSpzee7wLCqbvX80Vny27teVOG5am2Jeg/wTRF5nqo+JSJduDa5zwGdqvoLEbkTZz4vQEReBdyjqlER6cH5xZ8B9uI07TDOp/5HlO9QVwu/wpnxv+TN5zRV/UMDrjMntL+gL+oRf9C9Zp6ni5UKTqqmimA9GvhUOq/kESewZtr+txqqsb7svBMe+rH7bnUtce//iV/AUU323crWF9hxB/zhB26R1r0U4iMuwC8Qxll3FZLjzv115qXFC4iSbqEK3U07fussPj7fhAUok3bad/+xJRYqFbiupsoImPJ+pJ2wnw0+e/hmPrugqE1tHQLxAFDVZ4Gvl9j0f3Gm+08DP6/wdJNbylY7lwOeX//f81q0fhq3gPgvEYng1IKPljj8dOCfRSSF067/RVXvBxCR/8D53HcAU/WQr4UP4xYpW3By8XZcA7e2YMbpdbNJTW1qLV2sNLXel0bl25eaVy7lbM3EWLXtfxtBK323Sn1e4yOAQLin8DM87nzYvam+FrB6tHCeTCZduPjIf77rXnj4J3Bkv6tJcOxrYOkJbltXP6w43VlgKqfNU0WMdqb9NfpaNdd2pVwkeKXR3Y1q4FNqXj6/E0b5TLYeZIvYZHPLc3/Zscl55pOe5zfcyZ3D26con9zb94hX6S5/v1DACZeeoyjKL5+cW17welK+ebaVcFHhmBkuzEu5asD5rzsWTHyGKzbAYz+rvwWsERYgnx/wuifms/NOeOC77j109rvAu60/gj7vPfStaa54GcNoMO0v6BtlYm516iGoyzXwKepSl9+2Nk8YZ9vauoPc85PeAB0L4d5vuxTJBavg5Le4H+p0eqKCHOqsB4uPnru8/L51heVuBVeEpW8thLunOnLmqE5osplU4SIhG1+Qe8wuFNSZ60O93iS9/QMRp1G//UcT5//pxeVjN2oR9LUuLKthqviTZnKpGMYs0f6CfjZ/YFqFrCBefxYcfXah9lsknJmkGZd4nisFK/URuif+qfvLZ9VLai+/Wm/mov67iNe+N4CL6aqQRUd7DZ+8RYmqK7/bt9ZZHzTjFgajez0Te/6CoMMtBgsq6lXJbLZwNiueYRTQ/oK+1XvET9aOi0zT+QK6iv1ajUq7nM0m1bRZnWtKLUo0Ba/4aKH1YdH64qY86aiznCw+elLDmDzLQbbLYFEAX97CYLZaOJsVzzAKaH9BD+V/YBqRdlfS1zudtlzmr8C0PcfU2jq1GVuv1oNmXICUotJFyXRWiqwFhwqj1jOZCRdCfsxBQSOadKE7IpOurS6+WfEMo4D2j7ovR1EU8jhoEs75u0nm7Kk05Unjjehv3gw8cYv78c/vslZN569ajzdml3p0qauVjNdqOD/FrmCBMHnxMOl3bHJjofxF/MyC8ZpkxW0Y1dOegh5cBbVSUdTZ1/92QbGJslnagTYb15xf272q9XijPO1qKamWbJBirgLjJJeC5rkWFqzy4hyqoqkEvdem9iuq+tfe60txJWA/W8U5zgYSqnqX9/oa4Geqen3dJ+zOfxGuoU1RDXsR2YhrXrPJe73Wm8tJItIJfAdXz19wDWrOU9UjjZhnO9K+pvvpop6Hn3apUfnMRjerVqTWe2X3ujHkW0oifW4xddOlwDy0lGSDFKsX4A3n5O+fXNSmdut7ttZaMGcceKOIfEFVB6s92OtffzZwBLirxrlUykW4wjeVNKvJ5xJcbf2TAUTk+TjHjFEhbWprroCFa7w0rTxmp5vVBE/c4rTdr53sHp+4ZfauXQ213qtmuNflaJXPAIrneutnnZAPdTpBF+p0r++6Yq5nanh4Qv6buHr3uTa13ngtpICrgY9M3iAia0XkNhHZIiK3et3YEJFrRORKEbkX1671A8BHROQPIpLteneWiNwlIttF5M155/yYiNzvnfMf8sb/U0QeEJGHReRib8zvXeshEdkqIh/xzrUBuNa7XjVtzpcxUc4XVX1cVcen2N+YxPwV9Gdc4vzEiaiXahRtfGpUPlltbHRfoTbWjIKm1ns11/e6HOU+g41fbD7hX2quBx51QWb5mKWk2SjVpnbcG6+VbwLvEJFJuYR8A/i+qp4CXEthidyVwBmq+kZcG9evquppqnqHt30Z8ArgfOByINtj/hjgxcBpwOkicpa3//tU9XScEP+wiCz29lmhqid5Wvj3PHfAJuAd3vWq6Qb3XeATInK3iPyj15HPqIL5K+iPPdcFg/Ushfiwe5zN4LC7rmgdbazaezVZ84S5vdflKPUZJBPwu6803wKs3PdldG/hfs1iKTGyrKOwcx3Ur03tCPBvuDrt+bwM1wUO4P/hBHeWH6tqeorT/qeqZlT1EWCpN/bH3t+DwO+B43CCH5xw34xraLPKG98OrBeRb4jIecBIJW+n3JjXXGY9ruHMIuB+ETm+xP5GGZrPoTWbzGVqVKv5rSu9V+X8xq/5cvMF3pX6DBIjLmArGzgY6nSpZnddMbcLk1Jz7T4KRp5xFpLZKthjVEuj29R+DSd8v1fh/tO1XM03ieeVreQLqnpV/o5eMN+rgZd5Xec2AhFVHRKRU4E/wbkH/ifwvmmuexDI/4IvAnKxB17g3Q3ADSKSAV4LPDrNOQ2P+avRV0Mj/LjN7LeuhVayVJT6DFJx8E+qONcMC7BSc/UHof+45rOUlOGOZ+/g/b98P+f95Dze/8v3c8ezd0x/UOvzJVwJw2zKSV3b1Ho93P8DeH/e8F3AW73n7wDK3ehK29L+EnifiHQDiMgKEVmCa4U75An544CXetv7AZ+q/gTXve6FFVxvI/BOkVzhkPfguukhIi8XkT7veQg4AXi6gnkbHg0X9F5gxoMi8jPv9b+KyGYvqOP67JenaWmUL71Z/da1Mvy0E4z5NIOgLEWpz8AXcLX282mGBVi578ur/8FZSv5qi3tsYiF/2b2XcSB2gN5QLwdiB7js3svaXth70fUfBPbgtNQ9wAfrEHWfzz8B/XmvPwS812u5+i5c1Hop/ht4w6RgvCJU9Vc4V8DdIrIVuB4nsG8GAiLyKM6ff493yApgo9fu9gfAJ73xa4ArywTjXY1bCGz2XAHdwJe9bUcDv/Wu/SDO1/+TcvM1iml4Hr2IfBQXqNGrqueLSK/nW0JEvgLsV9XLpzrHjPLo60Ujc8CboTBJvWmGnPlqcssnfwZrz4TNP2zO4j4t/H15/y/fz4HYAToCE7/vsVSMgY4B/vVP/nUOZ1YxTZVHbxjV0FAfvYisBF4HfB74KOQCSPBMNB2UDsJoHhrpS2+V8qnVMBeNXvKpNre81Gew/IXNKVCriZNosiI6u4/spjfUWzAW8UfYfWR3mSMMw6gXjQ7G+xrwcSb5ZUTke7hgikeAvy51oJeTeTHA6tVzaDZduKZYQ20GU26zMteNXvJjBGBmwXStvABr0iI6K7pXFGn08XScFd0rajrvHc/ewTUPX8PuI7tZ0b2Ci068iDNXlrVCG8a8pGE+ehE5H2eWf2DyNlV9L7AcFzV5YanjVfVqVd2gqhsGBgYaNc3paRdf+mwWhjn23LnzGzcqRqBVCus0aTDkRSdeRDKdJJaKoarEUjGS6SQXnXjRjM85X/3+hlEtjQzGezlwgYjsBK4DXiUiP8hu9HI5rwPe1MA51M5c59vXg1YqzlMrjchmaKX716TBkGeuPJNPveRTDHQMMJIYYaBjgE+95FM1ad/XPHwNQX+QjkAHIkJHoIOgP8g1D19Tv4kbRhvQMNO9qn4SL9rSy7e8FHiXiDxPVZ/yfPQXAI81ag51ox6m3Ln0m9bDnN0qNCJGoJXuX5O4msqZ1CsV7JWY5M3vbxiVMdt59AJ830uT2IorJPG5WZ7D7DPXGmGTanl1YTaq8LXS/WsCV1OtJvVKj1/RvYJ4Ol4wVg+/v2G0G7Mi6FV1o6qe75VWfLmqnuzVQX5HNgq/rZlrv2m7Fucpt4CC+sYItNL9awJXU60m9UqPb4Tf3zDakfldAne2mOtyt3Od8tYoZsuk3mr3b46zBqoxqZcy0Vd6/Jkrz+RTfKqkid+i8Q1jAhP0s8Fc+03nOuWtUczWAqpd71+DqDSVLmuiD/qDBSb6rmAX8XS8olS8Un7/cuf9FLUF/xlGq2KCfjZoBo2wlXPDyzGbC6h2vH8N4qITL+Kyey8DnCYeT8dLmtTzTfTAhGBXSKaT0x5fjux5I/5IzvSfHTdBb8xHTNDPBqYRNoZmWEDNI0qZw4GSJvJyJvV8ypnoRxIj/O1L/nZGpvfx9DjPjD5Dd6CbVCZF0B/Mndei8Y35SsNr3deDOa11bzQ3LVz/vZXIN4dnteyR+AgiQk+4p0DzrjQ/vh7179OZNLFUjHg6TiwZI61pPvW7TzEUH8oF8c3kvCWwWvdGy2IavdHamEl9VihlZt+T2oOiLOlakhvL7luJoL/oxIv4u9/9HXtSe0hrGr/46Qp08bENH5vyuEQ6QSwVI5qMMp4eL9r+xmPeyJWbr0TSQsAXqNr0bxjthgl6wzCmpZSZPa1pJlsEqzWRiwiKoqqoKNl25PluguVdy3nbcW/jBUtfQCwVI51JT3nODUs38I7j38H1T1zP3rG9HNN3jEXdG/MaE/SGYUxLqUh6v/hRKRT01RSsuebha+gJ9+QsAuBM7F974GuMJcfw+/3OcjC2hy/e/0U+cOoH2LB0Q8lzjSXH2Dq4lc0HNrP5wGZ2je4CYFXPqlZpg2sYDcMEvWEY01Iqkr4r0IWIEEvFZhQdn28lUFUUJSABdozsYGnnUoK+IIoSDoQhBTc8eUNO0I+nx3ns0GM5wf7U0FNkyBScP+KPsKZ3DbFUrGCBYhjzDRP0hmEUUK7YzORI+qwvfaaFaZZ1LWN/bD9hXzgnpMdT46AQ8ocK9g36gjw7+iw/evxHbDmwhUcPPUoykyzYJyABnr/o+Zw6cCqnDJzCKQOnsKpnVR3uiGG0NhZ1bxhGjlLR9dVE0k+Fqrro+FSMWCrG3c/dzZWbryToCxLyh0ikEyQzSToCHSTTScTnrAWxpNtfKfytEoT1C9bnBPuJi08kEojktkcCEY7qOqqmORdczjBaFNPoDcPIUa6IzUyLzaQyqZxgj6fiZHTCvL5h6QY+cOoHuOHJG9gX3UdfuI9j+45lx+EdPDLySJEpHlyswCkDp3Bq/6mcPHByUYCgYRjFmKA3ZNRqGgAAIABJREFUDCNHra1fM5ohnornctuzFe5KMTw+TDQZdSb86H4eH3qcx4ceL9jHJz56Q728cuUref3zXk9/R/+0c/D7/ET8EfPLG4aHCXrDqIF2a56yonsFT488zWhilGQmSdAXpCfUw5reNWWPSWaSRJNRYqkY4+nxopS7LNFklIcGH2Lz4Ga2HNjCzpGdRft0B7s5uf/knDl+ZffKXMpdOYL+IGF/mIg/QjgQJugLtt3nYhi1YILeMGZIOzRPmSwQBzoGeGDfA4gIfvwkMgkGY4O86Zg3FRw3nh4nmowSTUXLau2JdIJHDz3K5gNOsD85/GSB6R5c0N2Ji0/k1IFTOXXgVNYtWIdf/CXPt2nfJn765E/ZF93H8u7lvPuEd3POqnPw+wr3b4fPxTDqiQl6w5gh9fZnZ5ktbbSUQNx8YDM9oZ5cYFzIF6In1MP9e+/nPcn3EE1Fc6VmJ5PWNNuGt+VS3h49+CiJTKJgH7/4ObbvWOdnHziV4/qOy5WpLYVPfIT8IR7c/yDf2fIdQv4QiyKLGB4f5p82/RNhf7jo3jTqczGMVsUEvdF2zJagrNWfXYrZ1EZLCcR0Js14apx1C9eR0QyqSjqT5pnRZ9gf3V9wvKqya3RXTrA/NPgQY6mxouusX7CeU/qdYD9h8Ql0BjuL9sniFz/hQNiZ4gMRQr4QIsL1T1xPOBCuSHg34nMxjFbGBL3RVsymoKy073p2XqUWH5PHh+PDs6aNThaIqkrQF2Q8PU4incils42nx1nS6arX7Y/uzwn2LQe2MDQ+VHTeZV3LOGXgFE4bOI2T+09mQXhB2TlkA+cigQgRf6Ssdl+N8K7mczGM+YAJeqOtmE2zbaV918stPi4YvIAbt91YMP7MyDMs61pWIKSm0karaR07meVdy13BGn8YVSVDhs5gJylNEU/FCflDueYxSzqX8O6b3l1SsPeF+3LBc6cOnJpbFJQim58fCUQI+8MEfJX9BFUjvCv9XAxjvmAFc4y24ryfnEdvqLcgUltVGUmMcPObbq7oHNWY/ivZt1w71sHYIP0d/QXj24a3uUIwC9cX7FuqxepMWscmM8lc+tsdz97Btzd/u6BgzXh6nBMWn8BDgw9xePwwKU0VvWcfzm8e9AV51wnv4ry155WMjBcRwv4wIX/IRcT7w0WBc5VSbSGfBrhvrGCO0bKYoDfailp7nDeiMly5xccTQ09wbN+xBeOj46M8N/Ycq3tXT3v9Uu91+/B2FOXohUfnrhNNRVkUXsQXzvpCUYT8PXvu4YeP/ZB9Y/sApyUXRcb7QoT8IXzioyfUQ9gfRkQYT43TF+njslc47dknvpxvPd+/Xi/mOGXOBL3Rspjp3mgrajXb1sP0P1kgdQW7iKfjRWbnzmBn0XjAH+DohUezMLxwWn/+tuFtRWbytKbJZDKkM2kymiFDBr/42T22m2Q6SVrTbB/ezpbBLWw+sJmHDz5MIl0YGe8Tn4uM9wLojlt0HH9x61/QHewuENxhf5gD0QMs6lhExB8pqk9fb85ceaZFzRvGDDBBb7QVpZqvVKP51RqxXcofnzWnZ8+VXXy86/h3ceO2G4vGP7bhY0XzLXXeI8kjBOIBFkUWuQh5FEHw+Xw5k7uqMpYcIyABLrv3MrYMbmEsWRwZv7Z3bc7HftLik4oi45d2LmVofIjOQKe7hviIp+P0hnr5yG8+YoVpDKOJMdO9YeRRzvQflCALI8Vadq3HV2qOzj9vtqXrwdhBhseHWdq5NOdjPzJ+BEXx+XyuYl0qWmSKBziq86hckZqTB05mYXhh0T4hfyhnit+0dxOX33d5VfEAbYaZ7o2WxTR6Y15QqUAtZfrPCrSkJqdN2StnERhJjPCTP/lJ0fUqNUc/O/os3cFukulkrtlLT6iHRCpBT6iH3Ud2E/AF8Pl9HIofKjp+YXghp/SfktPaJ3d1ExFCvlAuGj4SiOATX277K1e9Ep/4Cu5h0BfMdZuDQjdH9tE0fcOYe0yjN9qeWiO2h8eHCwQalA/wqzUYMEu2OUy2Et0n7vgEQ/EhwoEwGc0QS8U4kjhCKpNy9eUntXDtDHRyUv9JOa19dc9qHtj/QK5T3FGdR3Hh8y/krJVn5QrU5Av2SigXZLhvbB+dwc6GtLqdzCwG6JlGb7QsptEbFdFKTUJKCepqAuwma9lZgZZPOb99LcGAybQztU9uDpPMJDl96en8+PEfk8wki8rKAgR9QY5fdHwun/2YhccUpLI9sO8Brtp8FSF/iL5wHyOJEb69+dv0Rfpm/DmWy21PanJWahlYTXvDqAwT9Ma0tNIPaqm5PjPyDMu7lhd826sJsKumWEs1wYD5Wns8FSeVcQF09++9nx8+9kP2ju0FXGW6ZKa4ccyK7hWcsfwMTuk/heMXH0/YH85tm1xK9ud3/5yOYEfuPXT6OomlYjUJ33KLmpDP5c3n04gStFbT3jAqwwS9MS2t9INaaq5BX5D9sf30hHty+1VTErVaLX0qv3uuV3sqTiKTcIF1qjw39hybD2xm466NPHbosSJTPMDqntW50rIn9Z9EV7Arty1bSjYcCNPh7ygqJfvc2HMlrRJPDT3F+3/5/hlZasotaq55+JpZKUFrNe0NozJM0BvT0ko/qKXm2t/Rz56xPcRSsRnl1teSspdMJ4mlnWAfT43nur4djB2cqBk/uIXB2GDRsQEJ0BHsIChBlnQt4UtnfWlimy+Qqw+f7cE+FaWsEofihziSOsKB2IEZW2rKLWpmowSt1bQ3jMowQW9MSzP/oFZSnCboD3L0gqMrSo8rR6XR8amMqxMfTzvNPZ1xgn00McrWwa1sOeAK1Tx75NmiY3tDvYynx+kJ9dAZ6CTgCyAiqCpD8SG6Q925OvGV1ojPUsoqMTw+TF+4r+6WmlprGVSK1bQ3jMowQW9MS7P+oFZTnOZjLykuQlMPsn72WCqWuxY4E/0jhx7JCfZtw9uKzPEdgQ5OXHxiLjJ+Te8aPn3npxmKD+VKzvrERzwVZ03vGvo7+mc8z1LCd2R8hEWRRQX71ctSMxtV7GZrQWEYrY6l1xkV0YxR97UWt5kpiXSCWCpWEB2fyqR4cujJnDn+saHHcsF1WQK+AMcvOj5XWvaYvmNyWns2h/2BfQ/w5fu/TCgQanhqWr1SAecJll5ntCym0c8TahXUzVhnvNriNDOllDk+oxl2Ht5ZUDM+looVHCcIRy88OqexH7/oeCKBSK6rW9a/HvFHclaIV695NWF/eFYWVc1qqTEMo740XKMXET+wCditqueLyLXABiAJ3Af8uaoW5w7lYRp9bTSiI1sz0CiNtJQ5XlXZM7Ynp7FvHdzKSGKk6NhVPas4td/lsp/cfzLdoW4ANh/YzE+e/Al7x/aysnsl7z3pvU1x75vRUtOkmEZvtCyzIeg/ihPsvZ6gfy1wk7f5h8Dtqvrtqc5hgr422tVEW68FjKrmzPD5aW+H4odyPvbNBzZzIHag6Nj+jv6cxn5K/yks7lgMkJtTR6CD+/feX1Qnvl4LLRPUs4YJeqNlaajpXkRWAq8DPg98FEBVf5G3/T5gZSPn0C7U8oPeSulx1VBLMFbWz377rtu57vHr2BvdS3+kn5MHTmYsMcbmwc3sGt1VdFxPqCfnYz914FSWdS1DRPD7/HQEOkpGxf/bI//WkDoErVTIyDCMuaPRPvqvAR8HeiZvEJHg/2/v3qPjLu87j7+/c9NdlmXJMsiWDcYOxsYyiXI5LRByKTisNyXOya2JEwg0h9PtbrrdLJtk95xtkgPdtNsNZ08J0KahlLakbaCnDm3MJttw6i6XxATkG2Bj4/tNwrJkS5rRXJ794/fTzzPSjDy6z4w/L84cjWZ+v9HzaIS/83ue7/N9gC3Al/OdaGZfAr4E0NHRMYtNLH3T/Qd9rpfHzeVV5nSWvb1w4gW+2/1d0pk0I5kRzgydYe/ZvTnnVYerWduyls4WL7CvWLCCkIWCynPVkeq8BWqyTfRBazq/q3IqZCQi82fWhu7NbBNwu3Put8zsFuArzrlNWc//KTDonPudS73W5T50P92h97mco5/Mz5rNDwTpTDoI6qPlZdOZNPvPeZnxO3t2sqt3V94KdLWRWu645g7Wt6xndfNqoqFokEBXE6kJdngr1AdgXK39fJviRC3KUGpoyu9LoU1lBkYG2PbxbdP8DcoYGrqXsjWbgf738a7YU0A10Ag87Zz7nJn9d+AGYLNzeTbLHuNyD/Qz8Q/6XF1lF/uhZKY/fIwm0MXTcW+ePe3Nsx8eOBzMse9+e/e4zHjw9l2vjdRSE6mhKlzFUGqI79/2farCF2vFZ2fGT9SHfHu0F9q3vTZaW/SueJP5Xc/28sLLlAK9lK1ZG7p3zn0N+BpA1hX958zsHuA24EPFBHmZmaH3uVoeV2w+wHSHnfMFdoBTg6eCK/advTs5lzg37tz2+nbWt65nT+8ekhkv4IK3HG4kPcKy+mUsa1h2yW1b8/XhZOokDsfiusUX+1VN3uB7/0v3Tyt3It/yuNEPFUmXHDfNM9pmfQAQubzMxzr6R4DDwAv+FdLTzrlvzkM7ykY5rXcu9kPJZBMER/ddj6fiJNKJILD3xfuCtezdPd2cGToz7txF1YuC7Vs7WzuDCnOvnHmFh199mFQmRU24hkQmQcZleO8V7+U3/89vXjIg5utD2qUZO0pWaG1/+57pfYDLl4wYDUVzRglGvz748oPBNIES90QuL3MS6J1zzwHP+fdVpGeSyqnUZ7EfSib6QLD92HYe2/0Yxy4cY0ndEjZfs5kNizcAMJgcZE/vHi+w93ZzeODwuDbUR+u5vuX6IDO+vb7dy4y3sDcM799WLFjBqcFTPPHaEwwlh6iN1nJz+81sPbC1qICYrw9hC+MsN9AXCt4z8QFu7EjN6DRPtupwNQf6D9Be367EPZHLkErgXsZma96+mNcdO789nBpmJD3CrctvZduhbURCEWLhGIlUgqHUEGtb1tIz1MP+c/vJjJnxqQpXsXbR2uCK/aoFVxG2MCELBXPsNZEaYuHYhG2Ip+OcuHCCpqqmYD08FJ43L3aOfqLcg5l+DwrN2x8/f5yVTSuVuDd1mqOXsqVAf5ma72p5qUyKnx35GU/sfYITgydYXLuYzas289S+pzgzdIaUSwUZ82Mz48MWZvXC1cEV+zua35GTGT+6lr0qXDUugS5bvqC47+w+oqEoVzVdFTw2UUAsJut+LkdfCr2v0038EwV6KV8aRr9MzfUa7OeOPBcEv7baNu5YdQddbV1841e+wZHzR+ju6WbbW9vY8/aevEveIhZh09Wb6GztZG3L2qC92RXoqiPVl0ygy5Zvjj0WjpFIJ3Iem2jevFCS43wNhxea5oG52SNeREqPAv1larar5SXTSeJpL3Fu+7HtPPTqQ0RDUWqjtZweOs13Xv4OyxuXc+z8MfoSfePOj4a8DyE1kRpvCD5UxYH+A7xw8gWuqLuCLddt4YMdH5z0vuzZ8s2xN8QaSCW80YRyDYiFPnyUS56HiMwsBfrL1ExXy0tmkkFG/GjluVFPvv4kyXSSodQQw6nhYPvWXb27gmOaq5tZ37KexqpGnj/+PNWRamLhGCPpES6MXCBhCTDvuP6Rfr7z8ndyRiGmErzyJcNFQ1HuWXcPO07vKLmAWIk7EIrI7NMc/WVqojl6uHTwHEmPeFfsqQTxdDwnsA8lh9jz9p5gyduhgUPjfn6IEJFwhDuvu5MNizewtH5pMJ/+6plXeXr/05wa8nZ66x/pn5XKcqO/h3K4yp3vnArRHL2ULwX6y9jDrz6cs7Rsy5otrGtZNy6gjKRGuO/d9/GuJe8ikU6QSCVIu4uBPZlO8vrZ14Mlb/v69o3LjAeCofiaSA04aK5p5oEbHyBkoWDJW02khmgot258ocqAY5eMQeUmmFXqDoRlRIFeypaG7itMsVeo249tZ+uBrbTUtFBd7wX0rQe28tMjPyUSilAVriLt0kQsQtKSfG/397i66WrAKwpz8NzB4Ip979m9QQGbUSELeZnxLZ1UR6r58Vs/JhaOBcPxKZdiy5otLKlbcsns+ELTDDhvyD1bJezKl0+l7kAoIrNPgb6CTGaXu+yse+ecF9gzad469xYdjR0kM8ng2GgoyvELx3nm4DN093Szq3cXg8nBcT9/ReOKYC37ukXrgtKyACubVvL0/qc5PXSapfVLuWvdXdOaS0+mk6xYsIJ4Oj5nu/LNp7negVBEKocCfQUpdslcKpPi6Pmj1Efrvc1f/OVskVAEDBLpBOFQmKGklzw3lBoi4zI8uvPRnJ/XVtsWrGVf37qepqqm4Lns3d5qIjWsWLCCj6362JT6pSVj5VUGWURKiwJ9iZlMctjYYw+cO8Di2sU5x1SHqzl2/hgXRi4Ey92S6SQtNS30xfuoinjbraYzaQZGBqgOV3Ny8GTOHPyopqom74rd35u9ra4t5/nsNe01kZoJh+Mn63JfMlZOZZBFpLQoGW8aplsVbez5XW1dQZ31YvZyL1S+tbm6mYzL4HAMpYZYWLWQB258IOf85088z8Pd3oYuI+kRRjK5c+yjwhZmQ+sG7lp3Fx0NHTnBO7t2fE2kZlpr2kVKnJLxpGwp0E9RoTrnSZckkU6QzqQJh8I0RBv45q9+c1KBupg669lZ2BmXwTnH2/G36U/001bbFiS9JTNJ7u28l87WTvad3Rdkxr9x9o1xV+1hC9PR0BG8bn20nmQmGbzGu5e8OxiOHy0xK3KZUKCXsqVLsCnKNx9+LHmMZCZJLBwjEoqQIUNfoo8Hf/nghMlwo+enM2kGEgM5gX5sZrVzjng6ztHzR6mL1uXMsTfGGkmmkiysXsipwVMsqFrAmgVr+NGBH/Htn3/by1TPEiLENQuvCebZr22+lm+88A2SmWQwpF8dqiaUDvHMgWfYvGrzpErMzqTprncvl/XyIiIzTYF+ivItdxqt+BYiFHx15jjUf6io8/PVWR9ODbOkdgln42dJpBKMZEZwzo2bY3fOMZgcpC5WR0OsgUP9h+gZ7uHNc2/mvF5HQ0cQ2Ne1rKMuWpfz/JmhMzTEGghbGDMjZCGioShv9b9V1B7ts2Eyqwlm43wRkXKmQD9F+ZY75WNY3kG/QnXWk/Ekg8lBYqEYw+lhkukkm1ZuYiAxkHP+5lWbeeiVhxhMDpLMJL2ys/5Q/InBE8Fxi2sWB1nxna2dLKxeOK4t2Vu5djR00BvvzdnS9Wz8LBdSF+gZ7pmXQDndDXhmYgMfjQiISLlSoJ+ifMudwhbG4ci4DIYF969uvDpv4t3fvvG3HD9/PJjPr4vU8YnVn2BX7y5OD52mrbaNzas209XWBcD5kfPs6t0VFKrpjfeOa1djrJH1revZ0LqBztZOltQtGXdMOBQOMuOrw9WEQ+HgubvW3TWuX+cS51hYtXDGd7orNnhOt1jMdM/XiICIlDMF+im6aelNfLT3ozklZG9bcRsvnniRwdQgaZcmbF4y3oeXf5gHXnqASChCfbSeU4On+OvX/jooSjOaye6cY9XCVXzm2s8AEE/F2fv2Xh7b/RjdPd0c7D84bgvXmkgNaxetDYbjlzcuHzePbmbBHu21kVqi4dwSs2P7NXYZ10BigObq5pzjJgqUxQTwyQTP6RaLme75c72lr4jITFKgn6J8JWS7e7r51LWfCnY+u7LuSj675rM8vvdx4qk4F5IXSGVSREIRUpkUZkZHY0fwmvFknCf2PsH+vv1093iZ8SmXyvm5kVCENc1rvOH4lvWsWrgq77K20cA0etU+mTXtY9es56uzXihQFhvAJxM8p1ssZrrnq/ysiJQzBfoxih1OzheonHO8dPIl/uiWPwrWpjvnONh3kMHUIOb/l86kvQDuIJHytnUdvTkcB/sPBj/HMFY2rQyu2Nc0r6E6Uj2uPSELeUvfojV5N4aZzhxzoUDZ1dbF3c/enfOahQL4gy8/WFRxn3zBc7rFYqZ7vsrPikg50zr6LJPZCnTjUxupj9YDkMFbx55xGS4kL/Bnt+auef/0P36aeCoeZONnyOStPDdqWcMyOlu8BLrrW66nPlaf97h8V+2FivhMd4vTYov7DKeGWVy7OGcEYSAxwMnBk3Q0dkypZsB80xaxgtbRSxnTFX2WiYaTb2y/Mdh/PZFOsKh6EWfjZ4PlbeDt0d5Wm1sW9mz8LC7jfQhIkz+4hy1MVbiKSCjCPdffwweWfSDvccVctecbNq+N1k57jjnfcH6+1+wf6R+30UzvcC+RUCTn2KaqJvoSfdRGa0u+drvKz4pIOVOgz5I9F+ucw+GIWITDA4c5cv4I2aMfH1v1MR7pfgRS5FShu/2q23nhxAvs7N1Jd083R88fzfuzYqEYDdEGFtUuoi/ex5K6JWxetRmAr//r14Os+0+u/iQ3L7u5qLn2Qh9UDvUfYmXTypxjpzvHXGjeOmpRkulk8H08HSeZSXJl3ZU5xzZXN5NMJ2mtaS2L4Fmo1r6ISKlToM/SXt/O4YHDnB85z0h6hEgoQl20jivrr2TsFEdXWxf3dt7LD/f9kOMXjhMNRYmGovzhL/6QDJmcY6OhKIZ5ZWVj9eAg5VLc23lvsHQOYMfpHTzS/QixcIymWBPnR87z6M5HWVSzqKggUyj4Ysz4dq6F5q2vWXhNMFc/GsCjoWjOtrfZx5baML2ISKVRoM/S1dbFy6df9irCESKZSdIX7+O2FbcFx6Qzafaf2x+sZX+j742gIt6oiEV4R/M7gkI1qxeuprunO9iPfez6+NG532cOPENNpCbYxz0SjjCcGi56iL1Q8F3RsIKh1BAwc1ucTpTJPvbqd3RKodifr+I0IiIzR8l4We5+9u5xV/S1kVoW1Szi/UvfT3dPN7vf3s1wajjnPMO4esHVQWb8dYuuy5sZHxzvr2sfO9e+8amNNMYac4bnnXMMjAyw7ePbLtn+iZLGoPhd9Yo1nS11Cx2rxDcpUUrGk7KlQJ9lNNAmM0n6E/3Bkrd8GfLt9e3B3uzrW9fTEGuY8LWLWdeeb736ZDPRy/1qeCZ+ByKzQIFeypaG7rO017dz/MLxvElqi6oXBVfs61vX01LTMuFrhSwU1I8vdq/26RZ2gfJPGlNxGhGRmaVAn+XOtXdy/4v3BzXrq0LekrfPr/08ty2/7ZLV5WLhWBDYq8JVk6pGB1rGBSpOIyIy0zR0P8b2Y9t5tPtRTg6epK2uLVjyli+RbnSuvTZaW/RVu0xMc/RSojR0L2VLgb6AowNHSbt0sOQtGop66+UzI6TTae57z318qONDk75ql0sr9zwDqUj6H13Kli5BL+Hv9/89sXCM2khtMO8+nBrmydef5MPLPzzfzatI5Z5nICJSShToC2iINRALx+gd7mVB1YKcK3clh4mISLkIXfqQy1NTdRO10VqWNiwlno7nPKfkMBERKRezHujNLGxmr5jZM/73v21mb5qZM7OJ16iVgDvX3hnsyuacYzg1XDKbr2w/tp27n72bjU9t5O5n72b7se3z3SQRESkxs56MZ2a/C3QBjc65TWZ2A9AHPAd0Oed6L/Ua85GMl60UksOK3SZW2ekis0LJeFK2ZjXQm9lS4HHgfuB3nXObsp47RJkE+vmWb8lZOe3nLlIBFOilbM320P2DwH0wZjs3mZTs7WfNvF3w0pk0A4mBnOOUJCgiImPNWqA3s03AGefcy1M8/0tmtsPMdvT09Mxw68rL8QvHve1ms4yu6c+mJEERERlrNq/ofxX4qD9E/wPgg2b2l8We7Jz7E+dcl3Ouq7W1dbbaWBba69vHZf43xBoIh8IlmSQoIiKlY9YCvXPua865pc65FcCngX92zn1utn5eJcuX+R8NRbln3T201rQyMDJAa02rEvFERGScOS+YY2b/AW/efgmw08z+yTl3z1y3o5xosxsREZkq1boXEbk0Zd1L2VJlPBERkQqmWvcyZaVQSEhERCamK3qZktEiPj3DPTTGGukZ7uGBlx5QGV4RkRKjQC9Tkq+ITzQc5c/3/Pl8N01ERLIo0MuU5Cvio8p8IiKlR4FepiRfER9V5hMRKT0K9DIlpbx9r4iIXKRAL1Ny09Kb+Pp7v67KfCIiJU7L62TKblp6kwK7iEiJ0xW9iIhIBVOgFxERqWAK9CIiIhVMgV5ERKSCKdCLiIhUMAV6ERGRCqZALyIiUsEU6EVERCqYAr2IiEgFM+fcfLfhksysBzg8wSEtQO8cNWeuVGKfQP0qJ5XYJ5hav3qdcxtnozEis60sAv2lmNkO51zXfLdjJlVin0D9KieV2Ceo3H6JFKKhexERkQqmQC8iIlLBKiXQ/8l8N2AWVGKfQP0qJ5XYJ6jcfonkVRFz9CIiIpJfpVzRi4iISB4K9CIiIhWsJAO9mX3fzM6Y2e6sxzrN7AUz22VmPzKzRv/xz5rZq1m3jJlt8J97l3/8m2b2v83M5qtPfnsm06+omT3uP/6amX0t65yNZvaG36+vzkdfstoymT7FzOwx//FuM7sl65xSe6+WmdnPzGyvme0xsy/7jzeb2U/MbL//daH/uPntftPMdprZO7Ne6wv+8fvN7Avz1Se/LZPt17X+e5kws6+Mea2S+DucQp8+679Hu8zseTPrLLU+icwo51zJ3YCbgXcCu7Me+wXwfv/+F4Fv5TnveuBA1vc/B94HGPBj4CPl0i/gN4Af+PdrgUPACiAMHACuBmJAN3BdmfTp3wGP+fcXAy8DoRJ9r64A3unfbwD2AdcBfwB81X/8q8C3/fu3++02vx8v+Y83Awf9rwv9+wvLqF+LgXcD9wNfyXqdkvk7nEKffmX0PQA+kvVelUyfdNNtJm8leUXvnPsX4OyYh1cD/+Lf/wnw8Tynfgb4AYCZXQE0OudedM454C+AO2anxcWZZL8cUGdmEaAGGAEGgPcAbzrnDjrnRvD6++uz3fZCJtmn64B/9s87A5wDukr0vTrpnPulf/888BrQjve7ftw/7HFbnXE8AAAEhElEQVQutvPXgb9wnheBJr9ftwE/cc6ddc714f0+5q3C2mT75Zw745z7BZAc81Il83c4hT49778XAC8CS/37JdMnkZlUkoG+gD1c/J/uE8CyPMd8CnjSv98OHMt67pj/WKkp1K8fAoPASeAI8D+dc2fx+nA06/xS7FehPnUDHzWziJldBbzLf66k3yszWwHcALwEtDnnTvpPnQLa/PuF3peSfb+K7FchJdmvKfTpbryRGCjRPolMVzkF+i8Cv2VmL+MNz41kP2lm7wWGnHO7851cwgr16z1AGrgSuAr4T2Z29fw0cdIK9en7eP947gAeBJ7H62PJMrN64Cngd5xzA9nP+aMPZbk+tRL7Ndk+mdkH8AL9f5mzRorMg8h8N6BYzrnXgVsBzGw18G/GHPJpLl7NAxzn4pAc/v3js9nGqZigX78BbHPOJYEzZvb/gC68K47s0YyS61ehPjnnUsB/HD3OzJ7Hm0/towTfKzOL4gWOv3LOPe0/fNrMrnDOnfSH5s/4jx8n//tyHLhlzOPPzWa7L2WS/SqkUH/nxWT7ZGbrge/h5YK87T9cUn0SmSllc0VvZov9ryHgvwGPZD0XAj6JPz8P3rwdMGBm7/MzuD8P/MOcNroIE/TrCPBB/7k6vASv1/ES3VaZ2VVmFsP7gLN1rts9kUJ9MrNavy+Y2a8BKefc3lJ8r/x2/BnwmnPuf2U9tRUYzZz/AhfbuRX4vJ99/z6g3+/Xs8CtZrbQz/q+1X9sXkyhX4WUzN/hZPtkZh3A08AW59y+rONLpk8iM2q+swHz3fCuzE/iJQAdwxte+zLe1d8+4H/gV/Xzj78FeDHP63QBu/Eyaf84+5xS7xdQD/wd3nz3XuA/Z73O7f7xB4D/WkZ9WgG8gZcs9VNgeQm/VzfiDfXuBF71b7cDi4D/C+z3+9DsH2/AQ377dwFdWa/1ReBN/3ZXmfVrif++DuAlTx7DS5wsmb/DKfTpe3ijSKPH7sh6rZLok266zeRNJXBFREQqWNkM3YuIiMjkKdCLiIhUMAV6ERGRCqZALyIiUsEU6EVERCqYAr2ULX/N+r+a2UeyHvuEmW2bz3aJiJQSLa+TsmZm6/DqDdyAV+nxFWCjc+7AFF4r4rzqfSIiFUOBXsqemf0B3gZAdf7X5cA6IAr8nnPuH/zNTp7wjwH4befc82Z2C/AtvAIq1zrnVs9t60VEZpcCvZQ9v6zuL/E2z3kG2OOc+0sza8Lb5/4GvMppGedc3MxWAU8657r8QP+PwDrn3Fvz0wMRkdlTNpvaiBTinBs0s78BLuDtefBvzewr/tPVQAdwAvhjM9uAt2Ne9pX7zxXkRaRSKdBLpcj4NwM+7px7I/tJM/s94DTQiZeEGs96enCO2igiMueUdS+V5lng3/s7mmFmN/iPLwBOOucywBYgPE/tExGZUwr0Umm+hZeEt9PM9vjfA3wX+IKZdQPXoqt4EblMKBlPRESkgumKXkREpIIp0IuIiFQwBXoREZEKpkAvIiJSwRToRUREKpgCvYiISAVToBcREalg/x/cs4dD4if83AAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ] } ] }